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ABSTRACT: Under the Atmospheric River Reconnaissance (AR Recon) Program, ocean drifting buoys (drifters) that pro-
vide surface pressure observations were deployed in the northeastern Pacific Ocean to improve forecasts of U.S. West Coast
high-impact weather. We examine the impacts of both AR Recon and non-AR Recon drifter observations in the U.S. Navy’s
global atmospheric data assimilation (DA) and forecast system using data-denial experiments and forecast sensitivity obser-
vation impact (FSOI) analysis, which estimates the impact of each observation on the 24-h global forecast error total energy.
Considering all drifters in the eastern North Pacific for the 2020 AR Recon season, FSOI indicates that most of the beneficial
impacts come from observations in the lowest quartile of observed surface pressure values, particularly those taken late in the
DA window. Observations in the upper quartile have near-neutral impacts on average and are slightly nonbeneficial when
taken late in the DA window. This may occur because the DA configuration used here does not account for model biases,
and innovation statistics show that the forecast model has a low pressure bias at high pressures. Case studies and other analy-
ses indicate large beneficial impacts coming from observations in regions with large surface pressure gradients and integrated
vapor transport, such as fronts and ARs. Data-denial experiments indicate that the assimilation of AR Recon drifter observa-
tions results in a better-constrained analysis at nearby non-AR Recon drifter locations and counteracts the NAVGEM pres-
sure bias. Assimilating the AR Recon drifter observations improves 72- and 96-h Northern Hemisphere forecasts of winds in
the lower and middle troposphere, and geopotential height in the lower, middle, and upper troposphere.

SIGNIFICANCE STATEMENT: The purpose of this study is to understand how observations of atmospheric pressure
at the ocean surface provided by drifting buoys impact weather forecasts. Some of these drifting buoys were deployed under
a program to study atmospheric rivers (ARs) to improve forecasts of high-impact weather on the West Coast. We find that
these observations are most effective at reducing forecast errors when taken in regions near fronts and cyclones. The addi-
tional drifting buoys deployed under the AR Reconnaissance project reduce forecast errors at 72 and 96 h over North
America and the Northern Hemisphere. These results are important because they illustrate the potential for improving fore-
casts by increasing the number of drifting buoy surface pressure observations over the world oceans.

KEYWORDS: Atmospheric river; Buoy observations; Forecast verification/skill;
Numerical weather prediction/forecasting; Data assimilation

1. Introduction

Atmospheric rivers (ARs), elongated corridors of horizontal
moisture transport, account for more than 90% of the extratropi-
cal vapor transport (Zhu and Newell 1998) and are associated
with both beneficial and hazardous impacts at landfall (Ralph
and Dettinger 2012). ARs account for a large fraction of the an-
nual precipitation and floods over the western United States
(Dettinger et al. 2011; Dettinger 2013) and are primary drivers of

flood damage (Corringham et al. 2019). ARs are also often asso-
ciated with other hazardous impacts such as landslides (Cordeira
et al. 2019), high winds (Waliser and Guan 2017), and avalanches
(Hatchett et al. 2017). Despite steady progress in numerical
weather prediction over the years, there are still significant fore-
cast errors in short-range prediction of ARs in terms of inte-
grated vapor transport (IVT) and landfall location (Nardi et al.
2018). Given the potentially extreme impacts, it is important to
have AR forecasts as accurate as possible.

The AR Reconnaissance (AR Recon) project is a research
and operations partnership developed to address the need to
improve AR forecasts (Ralph et al. 2020). As part of AR Re-
con, dropsonde observations are taken in regions where it is de-
termined that more accurate analyses are likely to improve
forecasts of the ARs and their impacts (Cobb et al. 2023). These
AR Recon dropsondes have been shown to improve forecasts
of ARs (Zheng et al. 2021a), and to have comparable impact on

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/MWR-D-22-
0124.s1.

Corresponding author: Carolyn Reynolds, carolyn.reynolds@
nrlmry.navy.mil

DOI: 10.1175/MWR-D-22-0124.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

R E Y NO LD S E T A L . 211JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:03 PM UTC

https://orcid.org/0000-0003-4690-4171
https://orcid.org/0000-0003-4690-4171
https://doi.org/10.1175/MWR-D-22-0124.s1
https://doi.org/10.1175/MWR-D-22-0124.s1
mailto:carolyn.reynolds@nrlmry.navy.mil
mailto:carolyn.reynolds@nrlmry.navy.mil
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


24-h global forecast errors relative to the North American
radiosonde network (Stone et al. 2020). The AR Recon drop-
sondes have also been used to diagnose and assess biases and
errors in reanalyses (Cobb et al. 2021) and analyses and short-
term forecasts (Lavers et al. 2018, 2020a; Stone et al. 2020).
These observations tend to be very impactful as they are taken
in regions where there are few other in situ observations, and
often are taken in cloudy and precipitating regions where
satellite observations provide less information than in clear
regions (Zheng et al. 2021b).

In addition to the deployment of dropsondes, AR Recon
has also deployed drifting buoys, or drifters (Centurioni 2018),
in partnership with the Global Drifter Program, (Lavers et al.
2020b; Ralph et al. 2020) that provide surface pressure obser-
vations (Centurioni et al. 2017b) in the northeastern Pacific.
The hourly surface pressure observations from the AR Recon
drifters serve as a complement to the episodic dropsonde pro-
file observations and substantially enhance the network of
non-AR Recon drifters of the same type that are maintained
by the Global Drifter program. Previous studies find substan-
tial impacts of the global drifter surface pressure observations
on forecast skill. Centurioni et al. (2017b) find substantial deg-
radations in mean SLP forecasts from the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated
Forecast System (IFS) when the global drifter surface pressure
observations are not assimilated. The impacts are seen primar-
ily over ocean regions at short lead times (e.g., out to 72 h),
but extend over land by 96 and 120 h. Denial of the drifter ob-
servations also degrades forecasts of wind vectors in the tropo-
sphere out to three days. Centurioni et al. (2017b) also employ
the forecast sensitivity observation impact technique (FSOI;
Langland and Baker 2004), which quantifies the value of each
observation in reducing the forecast error, and find that the
per-observation impact of the drifters is larger than that of any
other component of the observing system. In a more detailed
examination of the data-denial experiments reported in
Centurioni et al. (2017b); Horányi et al. (2017) find the larg-
est fractional impact of the drifter surface pressure observations
in the Arctic, the poorly observed Southern Ocean, and dynami-
cally active regions such as the North Atlantic Ocean near
Greenland and the North Pacific Ocean near Alaska. The drifter
surface observations contribute approximately 3% to the total
forecast error reduction on average; however, their impact can
be much larger regionally (over 50%) during complex or rapidly
evolving cyclogenesis cases. In a cost-benefit observing system
study using FSOI, only aircraft reports were found to have a
larger benefit per cost than the drifter surface pressure observa-
tions (Eyre and Reid 2014).

As noted in Ingleby and Isaksen (2018), the large impact
from the drifter surface pressure observations is not surprising
given that surface pressure provides information on synoptic-
scale variability, the observations are often within in situ data-
sparse regions, and satellite data provide little information
about surface pressure. In their FSOI examination, Ingleby and
Isaksen (2018), find the largest drifter surface pressure impacts
in the ECMWF IFS occur in the North Atlantic and North
Pacific storm tracks and over the Southern Ocean, regions that
are spatially well correlated with baroclinicity. In a series of

data-denial experiments, denial of the Northern Hemisphere
drifter observations leads to significant degradations in midlati-
tude tropospheric geopotential height anomaly correlations at
short ranges. The largest changes in the analyses occur in the
western parts of the Pacific and Atlantic. Given these results,
they advocate for upgrading drifters to include surface pres-
sure observations when possible, and would prioritize addi-
tional drifters in regions of baroclinic development, where
surface pressure observations are particularly impactful.

Motivated by the large impact of the drifter surface pres-
sure observations shown in previous studies, we examine
the impact of drifter surface pressure observations in the
northeastern Pacific in the U.S. Navy’s global prediction system.
This study will allow us to identify weaknesses in the prediction
system, understand the conditions under which the drifter obser-
vations are most impactful, and quantify the impact of the AR
Recon drifters on analyses and forecasts. This paper is a comple-
ment to the investigation of the impact of the AR Recon Drop-
sondes in the Navy global system (Stone et al. 2020). We employ
both FSOI and data-denial techniques in this study, as these
techniques provide independent complementary information
on observation impacts. Data-denial experiments quantify the
impact of removing a set of observations on forecast error,
while FSOI measures the contribution of individual observa-
tions (or sets of observations) to short-term forecast error reduc-
tion when those observations are assimilated. See Eyre (2021)
for a theoretical study exploring the differences between the two
metrics. In the first part of this study, we use FSOI and observa-
tion minus background and observation minus analysis statistics
applied to all (AR Recon and non-AR Recon) drifter surface
pressure observations in the northeastern Pacific to highlight
model error and explore how drifter impact varies by location,
observation value, and time in the data assimilation (DA) win-
dow. We separate the FSOI and innovation statistics into obser-
vation value quartiles to shed light on how atmospheric dynamics
and model biases affect observation impact. We consider case
studies to help pinpoint specific physical features where addi-
tional observations are most impactful. In the second part of
the study, we perform data-denial experiments to examine how
the assimilation of the AR-Recon drifters affects the analyses
and forecasts.

While we build on previous work, we present several findings
that, to our knowledge, are new to the literature. Previous work
has related drifter pressure observations to environmental condi-
tions in a time-averaged and/or area-averaged sense (Ingleby and
Isaksen 2018; Horanyi et al. 2017). Here, we relate the impact of
drifter observations to the specific environmental conditions at
the drifter site at the time the observation is taken, both through
quartile analysis and through case studies. Previous work has
shown that satellite observations taken later in the DA window
have a larger beneficial impact on the forecast error than satellite
observations taken earlier in the DA window (McNally 2019).
We will show this is true for the drifter observations on average
(broadening the generality of this finding), but our analysis goes
further to show that this is dependent on the observation value.
Previous work has examined the impact of withholding full sets
of sea surface pressure observations. In this study, we withhold
only the AR Recon drifter observations while continuing to
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assimilate observations from other drifters in the region. This
allows us to assess the impact of these special observations
when added to a complete standard network of observations
(including those from non-AR drifters).

In section 2, we describe the drifter surface pressure observa-
tions, data assimilation and forecast system, and experimental de-
sign and diagnostics. In section 3, we present the results from the
FSOI analyses and data-denial experiments. We provide a brief
summary and discussion in section 4.

2. Observations, models, and experimental design

a. Buoy surface pressure observations

As part of the AR Recon project, 32 drifters with surface
pressure observations were deployed ahead of the 2019 North-
ern Hemisphere winter season, with an additional 64 drifters
deployed ahead of the 2020 season (Ralph et al. 2020). The
drifters deployed for the 2019 season, and 48 of the 64 drifters
deployed for the 2020 season are Surface Velocity Program Ba-
rometer drifters (SVPB; https://gdp.ucsd.edu/ldl/svpb/) that pro-
vide sea surface temperature and barometric pressure. The
barometer is located inside the buoy at its equator and there-
fore, on average, is located at sea level. Sixteen of the 64 drifters
deployed for the 2020 season are Directional Wave Spectra Ba-
rometer drifters (DWSB; https://gdp.ucsd.edu/ldl/dwsbd/),
which also provide a directional wave spectrum (Centurioni
et al. 2017a; Lavers et al. 2020b). 2020 AR Recon drifters were
deployed by a ship of opportunity between 10 and 22 January
2020 and by 53rd Weather Reconnaissance Squadron, U.S. Air
Force Reserve Command, WC130-J flights on 11, 17, and 24
February. Given the staggered deployment and the limited
drifter life span (drifters have a median life span of approxi-
mately 1.5 years), the number of drifters within our northeast-
ern Pacific domain (1158–1658W, 158–608N) varied through the
AR Recon 2020 season. There were 51 AR Recon drifters
within the domain at the beginning of the AR Recon 2020 sea-
son (0000 UTC 22 January 2020) and 60 AR Recon drifters at
the end of this AR Recon season (0000 UTC 12 March 2020).
Additionally, there were 22 and 23 Global Drifter Program
non-AR Recon drifters supplying surface pressure observations
within this domain at the beginning and end of the AR Recon
2020 season, respectively. Most drifters report within a few
minutes of the top of the hour, so each drifter typically con-
tributes six observations within each 6-h DA cycle. The ob-
servations are assimilated during all four of the update
cycles (centered on 0000, 0600, 1200, and 1800 UTC) each day.
The instrument error contribution to the surface pressure obser-
vation errors from the drifters is characterized as 0.3–0.4-hPa
RMSE and as such is considered more accurate than the
0.5-hPa errors associatedwith ship-automated systems (Centurioni
2018; Centurioni et al. 2019). This accuracy specification comes
from the company making the sensor (Honeywell), and each sen-
sor is calibrated andprovidedwith a calibration certificate.

b. Data assimilation and forecast system

We are using the same U.S. Navy global operational atmo-
spheric model and DA system used in Stone et al. (2020), and

the system description here follows the description in that article
closely. The system consists of the Navy Global Environmental
Model (NAVGEM; Hogan et al. 2014) and the four-dimensional
hybrid variational-ensemble DA system, the NRL Atmospheric
Variational DA System-Accelerated Representer (NAVDAS-
AR; Xu et al. 2005; Rosmond and Xu 2006; Kuhl et al. 2013).
The system is very similar to the operational system run by Fleet
Numerical Meteorology and Oceanography Center at that
time. The forecast model is run at a T425L60 resolution, or
approximately 31-km horizontal resolution, with a model
top at 0.04 hPa. The adjoint and tangent linear models are run
at a reduced resolution (T119), producing analysis increments of
approximately 100-km resolution. For the experiments per-
formed here, NAVDAS-AR is run as a strong constraint varia-
tional assimilation (although the option to run it in the weak
constraint formulation exists). Over 100 million observations are
processed in every 6-h DA cycle, with approximately 3.4 million
observations assimilated after quality control (QC) and data thin-
ning to create the final analysis. Only the observations retained
after quality control and data thinning steps are used in our
study. The observation types routinely assimilated are those
listed in Table 2 of Stone et al. (2020) with two exceptions. In
this study we are not assimilating the Ozone Mapping and Pro-
filer Suite (OMPS) ozone retrievals because format version 6,
used in the prior study, was discontinued and format version 8
was not immediately adopted. The other difference is the assimi-
lation of the Geostationary Operational Environmental Satellite
Advanced Baseline Imager (GOES ABI) clear sky radiances,
which became available after the time period considered in the
earlier study.

Pressure observations from drifters are subjected to QC pre-
screening checks prior to forming the innovation vector, as well
as later being subjected to a three-sigma rejection criterion
within the NAVDAS DA system. The QC prescreening meas-
ures include duplicate checking, track checking, and checking
for errors related to time and elevation. A broad discussion of
these issues can be found in Pauley and Ingleby (2022). The cri-
terion for the three-sigma check, which operates on the innova-
tion, is based on specified observation error and estimated
background error, which includes a static component that varies
with latitude and an ensemble component that varies over time.
In our study, the drifter surface pressure observation errors
range between 1.03 and 1.21 hPa. This includes the 0.3–0.4-hPa
RMSE instrument error as well as representativeness error.
The static portion of the background error ranges from 0.29 to
0.65 hPa.As detailed inKuhl et al. (2013), the ensemble covarian-
ces used in the hybridDA scheme are localized such that the 50%
covariance localization is approximately 208 in both latitude and
longitude, and approximately 225 hPa in the vertical. There is no
bias correction applied to the observed drifter surface pressure.

Compo et al. (2011) and Slivinski et al. (2021) note in their
description and evaluation of the Twentieth Century Reanaly-
sis Project that it is possible to produce reliable tropospheric
reanalyses by assimilating only surface pressure observations
using an ensemble Kalman filter DA system and prescribing sea
surface temperature, sea ice concentration, and radiative forcing.
As Compo et al. (2011) note, outside the tropics, geostrophic
balance allows one to describe a reasonable approximation to
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the barotropic part of the flow, and surface pressure tendencies
provide information about tropospheric circulations. Slivinski
et al. (2021) find that version 3 of this reanalysis has 500-hPa geo-
potential height skill comparable to modern 3–4-day operational
forecasts. The success of the Twentieth Century Reanalysis il-
lustrates the potential impact of surface pressure observations
in constraining the flow deep into the troposphere. In our sys-
tem, assimilation of the AR Recon drifters after just one up-
date cycle modifies the temperature analysis by over 0.058C
from the surface to 700 hPa, with a maximum of over 0.158C
(Fig. S1 in the online supplemental material). This is a small
but nonnegligible impact when compared with the full analysis
increment (background minus analysis), which reaches values
of 1.28C in this region.

The global forecasting and DA system also has the capability
of computing forecast sensitivity observation impact (FSOI). As
described in Stone et al. (2020), FSOI is used to quantify the con-
tribution of individual observations or sets of observations to a
reduction in the 24-h forecast error (Langland and Baker 2004).
Forecast error here is measured in terms of a global moist total
energy norm, including both kinetic and moist static energy

(Ehrendorfer 2000). We apply FSOI to investigate the impact of
the surface pressure observations from the drifters in the north-
eastern Pacific on forecast error. We use FSOI to understand
how the impact of the observations varies as a function of loca-
tion, both in a timemean sense and for case studies, and as a func-
tion of when the observations are taken within the DAwindow.

c. Experimental design and diagnostics

For the control experiments, we run the DA update cycle
assimilating all data, including the AR Recon drifter surface
pressure observations and dropsonde observations, for the
AR Recon 2020 season, starting on 0000 UTC 22 January–
0000 UTC 12 March. The 120-h forecasts are run from every
0000 and 1200 UTC analyses during that period. We run a paral-
lel update cycle and forecast system in which the AR Recon
drifter surface pressure observations are not assimilated, and re-
fer to this as the denial experiment. To learn about model biases
and the impact of the AR Recon drifter observations on the
analyses, we examine DA statistics including the innovations (ob-
servations minus the 6-h background forecast, or OmB), and

FIG. 1. Location of the 60 AR Recon (blue) and 23 non-AR Recon (red) drifters with pressure
sensors at the end of the AR Recon 2020 field project season. Also shown is NAVGEM analyzed
sea level pressure (hPa) average (contours) and standard deviation (shading) over the AR Recon
2020 field project season (0000 UTC 22 Jan–0000 UTC 13 Mar 2022).
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observations minus the analysis (OmA). We examine the impact
of both the AR Recon and non-AR Recon drifter surface pres-
sure observations using the FSOI technique described above,
computed to examine the impact on 24-h forecasts produced
from the 0000, 0600, 1200, and 1800 UTC analysis times. We also
compare the control and denial forecast errors (measured in
terms of RMSE and anomaly correlation) over North America
and the Northern Hemisphere extratropics as verified against
ECMWF operational analyses for several metrics.

3. Results

a. DA statistics and FSOI for all northeastern Pacific
drifter surface pressure observations

The location of the AR Recon and non-AR Recon Global
Drifter Program drifters that provide surface pressure observations
at the end of the AR Recon 2020 season (on 0000 UTC 13 March
2020) are shown in Fig. 1. The AR Recon drifters were deployed
in regions meant to intersect atmospheric rivers that affect the
U.S. West Coast, and are thus clustered between Hawaii and
North America. The amount of drift over the AR Recon time
period varies from nearly stationary to over 600 km, with the
drifters in the Gulf of Alaska drifting east northeastward, and
those on the eastern side of the subtropical high drifting south
southwestward (see Fig. S2 in the online supplemental material).
Figure 1 also shows the average and standard deviation of sea
level pressure (SLP) for the 2020 AR Recon season. The AR
Recon drifters are situated mostly under the time-average high
pressure area and its periphery, while the non-AR Recon drifters
are more widespread, extending from the subtropics to near the
Aleutian low in the Gulf of Alaska. The SLP standard deviation
indicates that most of the storm track activity occurs to the north
and northwest of many of the AR Recon drifters for this particu-
lar season, although case studies indicate that the drifters success-
fully sampled ARs during the season.

We use statistics from the DA system to identify potential
biases in our model. To investigate these biases and determine
if the biases are conditional on the observed pressure values,
we divide the observations into equally populated quartiles for
subsequent analyses. The first quartile contains the lowest ob-
served pressures (below 1019.5 hPa). The second quartile con-
tains the observed pressures between 1019.5 and 1024.2 hPa.
The third quartile contains observed pressures between
1024.2 and 1028.4 hPa, and the fourth quartile contains observa-
tions above 1028.4 hPa. We note that what we refer to as model
bias in this paper is the “signal” seen by the data assimilation sys-
tem as the systematic difference between the background fore-
casts and the assimilated observations. It is not an independent
estimate of model bias by unassimilated observations.

The distribution of surface pressure innovations (OmB) differs
depending on the observation quartile considered (Fig. 2). For all
the quartiles, the distributions (solid lines) differ slightly from a
Gaussian distribution (dashed line) with the same variance. All
quartile distributions have positive kurtosis, indicating heavy tails.
These heavy tail innovation distributions are common, as noted
in Tavolato and Isaksen (2015). The observations in the lowest
quartile have a heavy tail on the lower side of the distribution

(where pressure observations are lower than the background)
and have the largest magnitude skewness. This may be related to
the inability of the coarse resolution NAVGEM model and DA
system to capture extreme low pressures with strong pressure
gradients (and may also be due to the model failing to represent
the lowest observed pressures that occur between grid points).
Time series for observed and background values for a drifter
reporting very low pressures (not shown) indicate that the model
responds too slowly to observations of rapid pressure falls and
the three-sigma check blocks the use of some valid information.
The center of the distribution of the innovations shifts to the right
for the higher quartiles, indicative of a conditional bias in
NAVGEM (the low pressure bias becomes more pronounced
at higher pressures). Results for quartiles determined by back-
ground pressure rather than observed pressure show some
quantitative differences but are qualitatively very similar (Fig. S3

FIG. 2. Frequency of drifter surface pressure innovation (observa-
tion2 background; hPa) for the four different quartiles ranging from
(a) the first quartile with the lowest observed values (blue) to (d) the
fourth quartile with the highest observed values (green). Frequency
of the actual innovations is denoted by the solid curves, and a Gauss-
ian distribution that matches the variance of the innovations is given
by the dashed curves. The vertical dotted lines show the innovation
mean value. Standard deviation, skewness, and kurtosis are provided
in the panels.
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in the online supplemental material). While the kurtosis values
remain similar for the observation-based and background-based
quartiles, the skewness does change substantially, particularly for
the fourth quartile, where it changes from20.274 to20.656 hPa.

The heavy tail to the higher side of the distribution for the
middle quartiles (and to a lesser extent for the highest quartile)
in Fig. 2 suggests that NAVGEM is also not capturing the
extreme high pressures. Because high pressure centers are typi-
cally broad in geographic extent, this NAVGEM conditional bias
may not be due to model resolution. Time series for observed
and background values for a drifter reporting very high pressures
(not shown) indicate that the model is able to respond to the
more slowly varying changes associated with the high pressure,
such that the observations are not rejected (in contrast with some
rapid pressure falls associated with cyclones). Rather, the innova-
tions in high pressure regions are small, but positive on average.
Further study would be required to determine the cause of this
model low bias at high pressures.

Horanyi et al. (2017) find that aggregate drifter surface pres-
sure observation impact in the North Atlantic can spike during
periods of cyclogenesis, when the observed pressure values are
relatively low. We examine the FSOI frequency distributions as
a function of observation quartile to see if lower pressure obser-
vations are more impactful than higher pressure observations in

our northeastern Pacific domain. The frequency distribution of
FSOI impact is tightly clustered near zero for all quartiles
(Fig. 3). The wider distribution for the observations in the
lowest quartile (blue curve) than for the other quartiles con-
firms that the lower pressure observations have more frequent
large impacts on the 24-h forecast error than the observa-
tions in the other quartiles. These impacts are both benefi-
cial (negative values) and nonbeneficial (positive values).
On average, the observations provide a beneficial impact on
the forecast, as indicated by the inset showing the aggregate
impact by quartile. Most of the beneficial impact comes
from observations in the lowest quartile. In contrast, obser-
vations in the other quartiles have near neutral impacts in
aggregate. Similar results are found when considering quar-
tiles based on background pressures rather than observed
pressures (Fig. S4 in the online supplemental material). To
examine the statistical significance of this result, we evaluate
the differences between the impact of the observations in the
lowest pressure quartile and the impact of the observations in
the other quartiles at each analysis time. The impact from the
observations in the lowest pressure quartile is significantly
more beneficial than the impact from the observations in
the other three quartiles at the 95% level (Figs. S5a and
S6a in the online supplemental material).

FIG. 3. Frequency distribution of drifter surface pressure observation impact (1023 J kg21) for
the different observation quartiles. The quartile with the lowest pressure observations is in blue, the
quartile with the second-lowest pressure observations is in maroon, the quartile with the second-
highest pressure observations is in purple, and the quartile with the highest pressure observations is
in green. Negative values indicate beneficial impacts, and positive values indicate nonbeneficial
impacts. The inset shows aggregate impact (J kg21) and percentage of observations that are benefi-
cial for each quartile.
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More than half of all drifter observations are beneficial,
although when considered by quartile, the largest fraction of
beneficial observations (54.4%) occurs for the observations in
the lowest quartile. The fraction of beneficial observations in the
other quartiles ranges from 47.6% to 51.3%. The finding of just
over half of the observations having a positive impact is typical of
operational DA systems (e.g., Gelaro et al. 2010). Lorenc and
Marriott (2014) use a simple model to explore why the fraction
of observations improving a forecast are just over 50% and find
this is due to multiple factors, including observational errors,
errors in the verifying forecasts, imperfect background error
statistics, and growing modes.

Previous work has indicated that the observation impact, in ad-
dition to varying by observation value, may also vary by the ob-
servation time within the DA window. In the ECMWF 4D-Var
system, McNally (2019) uses data-denial experiments to show
that excluding the satellite observations taken later within the
12-h DA window has a larger detrimental impact on the analy-
ses and forecasts than does excluding the observations taken
earlier in the 12-h window. In fact, excluding observations
taken in the last three hours of the 12-h window has a bigger
detrimental impact than excluding observations taken in the
first 6 hours of the window. In McNally (2019) this is attributed
to observations taken later in the window providing the most
up-to-date information on the atmosphere, as well as providing
additional dynamical information via feature advection or
wind tracing. That is, mismatches between observations and
the background state at the start of the window can only be
addressed through local changes, while mismatches between
observations and the background state at the end of the win-
dow may also be addressed by remote changes that evolve
to influence the local state.

We are interested in determining if the impact of the buoy
surface pressure observations is likewise a function of the ob-
servation time within the DA window. Aggregating the obser-
vation impact for all drifters as both a function of observation
quartile, and window within the DA system (Fig. 4) shows that
for all observation values (orange bars) the biggest impact
comes from observations take in the last hour (13) of the DA
window. The smallest impacts, however, come from observa-
tions taken near the center of the DA window (21 and 11)
and not at the beginning of the window. Separating the im-
pacts by observation value quartile explains this pattern. For
the observations in the lowest quartile, observations taken at
any time during the DA window are beneficial on average, but
larger benefits are obtained by observations taken in the sec-
ond half of the DA window as opposed to the first half of the
DA window, and the largest benefits come from observations
taken in the last hour. The observations in the second quartile
are near-neutral or beneficial throughout the window. The obser-
vations taken in the third and fourth quartiles are near neutral or
slightly beneficial in hours 23 and 22 but become nonbeneficial
for the hours from21 through13. When the impacts of all quar-
tiles are summed together, this results in the smallest impact
occurring during the center of the window.

To evaluate the statistical significance of the varying impacts
across the time window, we take the difference between the
13-h observation impact and the 23-h observation impact for

each analysis time, then evaluate if the distribution of these dif-
ferences is significantly different from zero. We repeat the pro-
cess such that we can evaluate the difference between the 13- h
observation impact and the impact from every other time win-
dow. When considering impacts for all the observations (orange
bars in Fig. 4), the 13-h observations are not significantly more
beneficial than the observations at other hours in the DA win-
dow at the 95% level (Fig. S7 in the online supplemental
material). However, the 13-h observations are more beneficial
than the 21-h observations and the 12-h observations at the
90% level. In contrast, when considering only the observations
in the lowest pressure quartile (blue bars in Fig. 4), the 13-h
observations are significantly more beneficial than the observa-
tions taken at every other hour in the DA window at the 95%
level (Fig. S8 in the online supplemental material).

The observation impact sensitivity to DA window time that
emerges from this analysis is more nuanced than the simple
explanation of later observations having a larger beneficial
impact than earlier observations. The relatively small total im-
pact that comes from the observations in the middle of the
DA window, at hours 21 and11, is most likely specific to the
Navy system. At these hours in the middle of the DA cycle,
much of the beneficial impact of the observations from the
lower quartile is canceled out by the nonbeneficial impact of
the observations in the third and fourth quartiles. McNally
(2019) hypothesizes that model error might make it more dif-
ficult for a 4D-Var system to make good use of observations
taken later in the update cycle. As denoted by the vertical
lines in Fig. 2, the bias is near zero for the first quartile, but
increases to almost 0.5 hPa for the highest pressure quartile.
This bias may be responsible for the increasingly nonbenefi-
cial impacts for the observations taken in the highest quartile
as the time in the DA window increases. Mean innovations
for the highest quartile (not shown) are the smallest during
the first 2 h of the DA window and largest during the last two
hours of the DA window. While we are currently using a

FIG. 4. Total impact from all northeastern Pacific drifter surface
pressure observations (orange) as a function of hour within the 6-h
DA cycle. Impact is also broken out by observed pressure quartile,
with the lowest quartile in blue and the highest quartile in green.
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strong-constraint version of NAVDAS-AR, it is possible that us-
ing the weak constraint version that accounts for model error
may mitigate this issue, and is an avenue for future research.

b. Case studies

As may be expected from earlier work (Centurioni et al.
2017b; Horanyi et al. 2017; Ingleby and Isaksen 2018), the
impact of the drifter observations varies substantially by lo-
cation (Fig. 5). Drifters that are in the northern part of the
domain, near the Aleutian low in the Gulf of Alaska, have
the largest beneficial impact when averaged over the entire
AR Recon 2020 time period, followed by drifters in the far
western and southern parts of the domain. Observations in the
northern part of the domain occur in a region with relatively
low pressure and large pressure variability as compared with
the rest of the domain. The relatively large impact from observa-
tions in this region is consistent with the high impact in the low
pressure quartile shown in Fig. 3, as well as prior results showing
the largest beneficial FSOI impacts of the drifter surface pressure
observations in the ECMWF IFS system in storm track regions
(Ingleby and Isaksen 2018). These results are also consistent with
an ensemble-sensitivity study of West Coast cyclones showing
lower sensitivity for storms that make landfall south of 408N than
those that make landfall farther north (McMurdie and Ancell

2014). The drifters in the central part of the domain, under the
time-averaged high pressure, have near neutral (small beneficial
or small nonbeneficial) average impacts.

A visual inspection of Fig. 5 suggests higher impacts from
relatively isolated drifters, or drifters situated on the edges of
drifter clusters, than from drifters in the center of clusters, con-
sistent with the idealized work of Baker (2000) and the results
in Baker and Langland (2009). To quantify this isolation ef-
fect, we separate observation impact into quartiles based on
the average distance of the drifter to its four nearest drifter
neighbors (Fig. S9 in the online supplemental material). This
is not a perfect measure of observation isolation, and does not
take into account other types of observations. However, on av-
erage, the drifters that are relatively far from their nearest
neighbors have larger impacts than drifters that are relatively
close to their neighbors. In data assimilation, the spread of
information from the observations to the surrounding model
grid points is controlled by both the observation density and
the structure of the observation and background error cova-
riances. Specific factors related to the error covariances can
include the forward/adjoint observation operators, the ver-
tical and horizontal background error correlation length
scales and cross-variable covariances, and correlated ob-
servation errors.

FIG. 5. Average observation impact for the northeastern Pacific drifter surface pressures
(J kg21; the scale is provided at the top right). AR drifter identification numbers are in black
text, and non-AR drifter numbers for drifters reporting surface pressure are in green text. Bene-
ficial impacts are denoted by blue bars, and nonbeneficial impacts are denoted by red bars.
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Behind the time-average impact there is large case-to-case
variability. Both the impact of individual drifters, as well as ag-
gregate drifter impact, vary considerably from day to day, as is
apparent from plotting the drifter impact as a function of analy-
sis date and time (Fig. 6). This is consistent with the large case-
to-case variability in drifter impact shown for the North Atlantic
in the ECMWF IFS system (Horanyi et al. 2017, their Fig. 12).
For each analysis date–time group in Fig. 6, color lines repre-
senting individual drifters occur on both the positive and nega-
tive side of zero, indicating both nonbeneficial and beneficial
impacts from different drifters at any one analysis time. This is
true even for analysis times with relatively large cumulative
impacts (denoted by the dashed line), which are usually not
dominated by an individual drifter. The analysis times with the
two largest beneficial impacts (1200 UTC 30 January 2020 and
0600 UTC 24 February 2020) and the analysis time with the
largest nonbeneficial impact (0000 UTC 1 March 2020) all
occurred close to AR Recon intensive observing periods
(IOPs). These include IOP3 at 0000 UTC 30 January 2020,
IOP 11 at 0000 UTC 24 February 2020, and IOP12 at 0000 UTC
2March 2020.

Horanyi et al. (2017) find that the aggregate impact of the
drifters over the North Atlantic is much larger than the time
average impact (sometimes by a factor of 4) during periods of
evolving complex or fast deepening cyclogenesis. We examine
the impact of each individual drifter for a few cases
(highlighted by red in Fig. 6) in order to pinpoint the specific

features and regions that are associated with large drifter
impact. The impacts of the drifter surface pressure observations
for these individual cases (Fig. 7) exhibit impact patterns that are
distinct from the time-average patterns. For the two large benefi-
cial impacts (1200 UTC 30 January 2020 and 0600 UTC 24
February 2020, Figs. 7a–d), the biggest impacts come from
drifters in the regions associated with large pressure gradients
(e.g., frontal regions) and strong horizontal vapor transport in
the atmospheric rivers. Large impacts also come from observa-
tions within or on the periphery of the parent low pressure
center. Many of the drifters northeast of Hawaii that have
large impacts for these two analyses times have near neutral
impacts when averaged over the entire season (cf. Figs. 7 with
5). The impact of the observations located under the high pres-
sure centers to the east of the fronts and ARs have much
smaller impacts, some of which are beneficial and some of
which are nonbeneficial. Inspection of other analysis times as-
sociated with large beneficial impacts (not shown) are consis-
tent with the scenario of beneficial observations occurring in
regions of strong pressure gradients. For example, the large
beneficial impact at 1200 UTC 19 February is associated with
observations just south of a strong low pressure center in the
Gulf of Alaska, and the large beneficial impact at 1200 UTC
11 March is primarily associated with observations from two
drifters on the northeastern edge of an intensifying low pres-
sure center. In contrast, the large aggregate nonbeneficial im-
pact for the 0000 UTC 1 March 2020 case (Figs. 7e,f) does not

FIG. 6. Impact for all northeastern Pacific drifter surface pressure observations (dashed line)
as a function of the analysis time. The impact from the individual drifters is denoted by individ-
ual solid curves. The dates with the two largest beneficial impacts (1200 UTC 30 Jan 2020 and
0600 UTC 24 Feb 2020) and the date with the largest nonbeneficial impact (0000 UTC 1 Mar
2020) are circled in red and are considered in detail in Fig. 7, below.
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FIG. 7. Analyzed surface pressure (contours and shading; hPa) and observation impact of the drifter surface pressures
[J kg21; the scale is provided at the top right of (a), (c), and (e)] valid at (a) 1200 UTC 30 Jan 2020, (c) 0600 UTC
24 Feb 2020, and (e) 0000 UTC 1 Mar 2020 summed over the 6-h DA window. Beneficial observations are denoted by
blue bars, and nonbeneficial observations are denoted by red bars. Also shown is integrated vapor transport (IVT;
kg m21 s21; color shading) and analyzed surface pressure (contours; hPa) for (b) 1200 UTC 30 Jan 2020, (d) 0600 UTC
24 Feb 2020, and (f) 0000 UTC 1Mar 2020. Drifter locations are noted by black dots in (b), (d), and (f).
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come from a few drifters with large impacts, but rather is the
result of the accumulation of many drifters with small nonbe-
neficial impacts located under the high pressure center that
dominates the northeastern Pacific domain at this time. The
few drifter observations that do have moderate beneficial im-
pacts are in the far northwest corner of the domain, in the vi-
cinity of an AR and in a region of relatively low pressures
(consistent with the quartile analysis shown in Fig. 3).

The case study results are consistent with the results shown
in section 3a where the largest beneficial impacts are coming
primarily from observations taken in the lowest surface pres-
sure quartile (below 1020 hPa), with near neutral impact com-
ing from higher pressure observations. These results support
the importance of observations in dynamically active baro-
clinic regions (Ingleby and Isaksen 2018; Horanyi et al. 2017).
They are also consistent with prior studies showing large fore-
cast sensitivity to changes in the initial state in baroclinic
zones (Kleist and Morgan 2005; Doyle et al. 2019), shortwave
troughs (Zheng et al. 2013), frontal regions (Doyle et al.
2014), atmospheric rivers (Reynolds et al. 2019) and potential
vorticity features (Reynolds et al. 2001; Torn and Romine
2015). To quantify these relationships in a systematic way for
the entire period, we have separated observation impact into
quartiles based on the analyzed pressure gradient (Fig. S10 in
the online supplemental material) and analyzed IVT (Fig. S11
in the online supplemental material) at the drifter observation
location. These results confirm that larger beneficial impacts
come more from the observations that occur in regions that
have the strongest pressure gradients and largest IVT than
from observations in the other quartiles. The impact for the
quartile corresponding to the largest pressure gradients is 20.
3424 J kg21 with 53.9% beneficial observations. The impact
for the quartile corresponding to the largest IVT values is 20.
3329 J kg21, with 53.3% beneficial observations. These values
are comparable to, but slightly smaller than, the average impact
from observations in the lowest pressure observation quartile
(20.3820 J kg21, with 54.4% beneficial). Average impacts for
the other quartiles are near neutral. Some of the similarity of
the results for the different quartile definitions is probably due
to overlap in the observation sets (e.g., regions of high IVT are
also often regions of strong pressure gradients).

The nonbeneficial impacts of the observations under the
high pressure center in the 0000 UTC 1 March 2020 case may
be related to the strong-constraint 4DVar suboptimal use of
observations when there is significant model bias. However,
this is not a universal finding. Observation impacts under
the high pressure centers for 1200 UTC 30 January 2020 and
0600 UTC 24 February 2020 are small, but some are beneficial.

c. Data-denial results

The analysis in the previous subsections was based on the con-
trol experiment in which both non-AR Recon and AR Recon
drifter observations are assimilated, and did not distinguish be-
tween observations from non-ARRecon and ARRecon drifters.
In this section, we compare results from the control experiment
and the experiment in which the AR Recon drifter observations
are denied so as to examine how the addition of the AR Recon

drifter observations affects both the analyses and the forecasts.
The non-AR Recon drifter observations are assimilated in the
denial experiment (it is only the AR Recon drifter observations
that are denied).

Figure 8a shows the location of the non-AR Recon drifters
with drifter identification numbers in blue, and the location of
the AR Recon drifters in green, at 0000 UTC 12 March 2020.
Figure 8b shows the innovation (OmB) mean and standard
deviation at each of the non-AR Recon drifter locations for
the DA update cycles in which the AR Recon drifters are not
assimilated (in orange) and are assimilated (in blue). The red
circles in Fig. 8b indicate the non-AR Recon drifters for
which there is a discernible lowering of the innovation magni-
tudes by the assimilation of the AR Recon drifters. The iden-
tification numbers of these drifters are also underlined in red
in Fig. 8a. Not surprisingly, the non-AR Recon drifter loca-
tions (underlined in red) that are impacted by the assimilation
of the AR Recon drifters are the ones that are in close prox-
imity to the AR Recon drifters (denoted by green dots).

We examine non-AR Recon drifter number 210518 (located
in the middle of the domain, at 1438W, 328N) in more detail,
as this drifter shows the biggest differences from the assimila-
tion of the AR Recon drifters. The distributions for the con-
trol and denial update cycles shown in the left and right
boxplots, respectively, in Figs. 9a,b indicate that the assimila-
tion of the AR Recon drifter observations in the control case
reduces the median of both the OmA and OmB values and
tightens the distribution as compared with the denial case. It is
expected that the match between the observations and the
analysis will be better (differences will be smaller) than the
match between the observations and the background, and this
is seen in both the control and denial cases, but there is a big-
ger difference between OmB and OmA in the control case
than in the denial case. The scatterplots of OmB and OmA
versus observed pressure (Figs. 9c,d) indicate that the assimila-
tion of the AR Recon drifters helps correct the low pressure
bias of NAVGEM in the analyses and background, particu-
larly at high pressure values. This is indicated by the blue (con-
trol) dots being closer to zero than the red (denial) dots, and
the reduction in the slope of the linear fit line when going
from red (denial) to blue (control).

Given that the assimilation of the AR Recon drifters better
constrains analyses at the non-AR Recon drifter locations, we
may expect that the assimilation of these drifters will have a posi-
tive impact on forecast skill. NAVGEM performance as mea-
sured by RMSE and Anomaly Correlation over North America
and theNorthernHemisphere extratropics (Fig. 10) indicates that
this is indeed the case. Statistically significant (at the 95% level)
improvements are found for various metrics, including 500-hPa
anomaly correlation over the Northern Hemisphere at 72 and 96
h, andoverNorthAmerica from72 to 120 h, usingECMWFoper-
ational analyses as verification. These metrics are part of the
scorecard used by Fleet Numerical Meteorology and Oceanogra-
phy Center to decide on implementing model upgrades. There
are also reductions in vector RMSE for 850-, 500-, and 200-hPa
winds over the Northern Hemisphere at 72 and 96 h. The per-
cent reductions are very small on average (less than 1%), with
the largest percent reduction being 2.76% for the 200-hPa

R EYNO LD S E T A L . 221JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:03 PM UTC



geopotential height RMSE over North America at 96 h. For
most fields, the differences at analysis time do not meet the sig-
nificance threshold. However, these initial differences suffi-
ciently dampen error growth such that they result in a significant
error reduction two to four days later. (The reason for the slight
increase in Northern Hemisphere 200-hPa geopotential height
RMSEat analyses time is unknown.) These results are consistent
with the nonlocal beneficial impacts on forecast skill shown in
the drifter data-denial experiments in the ECMWF IFS system

(Horanyi et al. 2017; Ingleby and Isaksen 2018). However, unlike
these previous studies, which withheld global or NorthernHemi-
sphere drifter observations, in this study, the large-scale impacts
are coming only fromwithholding a subset of the drifter observa-
tions in the northeastern Pacific. The impact through the depth
of the troposphere comes from the ability of advanced (cross co-
variance) DA systems to extract information about the tropo-
spheric circulation through the evolution of surface pressure
observations (Compo et al. 2011; Slivinski et al. 2021).

FIG. 8. (a) Location and number of AR Recon (green dots) and non-AR Recon (blue dots
and numbers) drifters providing surface pressure observations. (b) Mean and standard deviation
of the innovations at each non-AR Recon drifter (denoted by drifter number on the x axis)
when the AR Recon drifters are assimilated (blue) and not assimilated (orange). Blue and or-
ange bars are slightly offset for the sake of clarity. The non-AR Recon drifters that show the
largest differences in mean innovation from assimilation of the AR Recon drifters are under-
lined in (a) and circled in (b) in red.
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4. Summary and discussion

We evaluate the impact of drifting buoy surface pressure
observations in the northeastern Pacific on analyses and fore-
casts in the Navy global atmospheric forecasting system dur-
ing the AR Recon 2020 season using two methods: FSOI and
data denial. The FSOI analysis considering both AR Recon
and non-AR Recon drifters provides information on how the
impact of the observations varies with timing, placement, and
observation value. The drifters located in the north of the
domain, near the time-averaged low pressure region in the
Gulf of Alaska, have larger average impacts than those lo-
cated near or in the time-averaged high pressure center be-
tween Hawaii and U.S. West Coast. The drifter observations
in the lowest quartile of observed surface pressures have
much larger (beneficial and nonbeneficial) forecast impact
than observations at higher pressures, and account for almost
all the net beneficial impacts of all the drifters. Drifter obser-
vations in locations of large pressure gradients and IVT also

have more beneficial impacts than drifter observations in less
dynamically active regions. This is consistent with the findings
of Ingleby and Isaksen (2018), who find that FSOI drifter
impact is spatially correlated with baroclinic instability, and
Horanyi et al. (2017), who find that FSOI drifter impact is
larger in dynamically active areas such as close to Alaska and
near Greenland. Our study also illustrates how drifters that are
more isolated, including those on the western and southern pe-
ripheries of the cluster of drifters in the central northeastern Pa-
cific, tend to have larger impacts than the drifters in the center
of the cluster, consistent with the idealized work of Baker
(2000) and the findings in Baker and Langland (2009).

We find large case-to-case variability in the FSOI impact for
the northeastern Pacific drifters. Horanyi et al. (2017) find similar
variability for North Atlantic drifters and that the spatial aggre-
gate of the drifter impact is largest during periods of complex cy-
clone evolution or rapid cyclogenesis. Our case studies looking at
the impact of the individual drifters allow us to pinpoint the

FIG. 9. Distributions of (a) observation minus background (OmB; hPa) and (b) observation minus analysis (OmA;
hPa) for non-AR Recon drifter 210518 (328N, 1438W) when AR Recon drifters are assimilated (control; left boxplots
with blue boxes) and are not assimilated (denial; right boxplots with red boxes). Also shown are (c) OmB and
(d) OmA as functions of observed pressure for non-ARRecon drifter 210518 when ARRecon drifters are assimilated
(blue) and are not assimilated (red), along with linear fits (blue and red lines). In the boxplots, the center black line in-
dicates the median and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to approximately 99.3% coverage if the data are normally distributed.
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largest impacts to regions associated with tight pressure gradients
and strong IVT (i.e., fronts and atmospheric rivers). These results
highlight how drifters that do not have a large benefit in a time-
averaged sense may become very beneficial in potentially high-
impact situations. These findings are also consistent with adjoint
and ensemble-based analyses showing that the forecasted evolu-
tion of cyclones is very sensitive to small changes in the initial
state in troughs, frontal regions and regions of strong moisture
transport (e.g., Kleist and Morgan 2005; Zheng et al. 2013; Doyle
et al. 2014; Reynolds et al. 2019; Torn and Romine 2015). The
results are also consistent with the adaptive observing strategy
of the AR Recon field project (Ralph et al. 2020; Cobb et al.
2023). For a review of previous targeted observing efforts and
their impacts, see Majumdar (2017).

When analyzing drifter observation impact as a function of
time within the 6-h DA window, we find that the aggregate
impact for all drifters is largest during the last hour within the
window (13 h). This is consistent with the satellite data-denial
experiments of McNally (2019). This effect is attributed to ob-
servations later in the DA cycle providing the most up-to-date
information, and because the evolution of covariances within
the 4DVAR system as the DA window progresses allows for
more nonlocal influences on local background–observation mis-
matches. However, the aggregate impact for all the drifters is
smallest during the middle of the DA window (from 21 to
11 h). This is likely system dependent and not necessarily a gen-
eral result. The reason for this becomes apparent when we break
the impacts down by observation quartile. The observations in
the lowest quartile have small beneficial impacts during the first
half of the DA window, and then have increasingly larger bene-
ficial impacts during the second half of the DA window. In
contrast, the small beneficial impacts of the upper quartile obser-
vations early in the DA window become nonbeneficial as the
window progresses. This may well be due to the strong-
constraint version of NAVDAS-AR being unable to account for
the conditional NAVGEMmodel low pressure bias at high pres-
sures, as seen in the OmB and OmA statistics. In future work, it
would be interesting to see if weak-constraint DA systems that
account for model error can alleviate this issue of nonbeneficial
observations in the upper quartiles later in the DA window.

The data-denial experiments of the AR Recon drifters shows
that these drifters add value to both the analyses and forecasts.

The assimilation of the AR Recon drifters results in a better-
constrained analysis at nearby non AR-Recon locations, and
helps correct for the NAVGEM low bias at high pressure. It
also results in a small but statistically significant improvement
to lower and middle-tropospheric winds and lower-, middle-,
and upper-tropospheric geopotential height forecasts over the
Northern Hemisphere at 72 and 96 h. Similar results are found
in the ECMWF IFS system by Ingleby and Isaksen (2018) and
Horanyi et al. (2017), but unlike those experiments, in which
drifter observations are denied over the globe or Northern
Hemisphere, here we are only denying a subset of the drifters
in the northeastern Pacific. A potential avenue of future re-
search is to decrease the error assigned to the drifter surface
pressures. In the NAVGEM system this observation error
(which includes both instrument error and representativeness
error) is currently over 1.0 hPa, while, as noted in Centurioni
(2018) and Centurioni et al. (2019), the drifter observation
instrument errors are characterized as 0.3–0.4 hPa. In the future
it would be worthwhile to assess the impact of allowing the DA
system to draw more closely to the drifter observations, although
this will not overcome difficulties in assimilating observations in
regions where the model is biased. It would also be of interest to
evaluate the drifter impact using AR-relevant metrics such as
those used in Cordeira and Ralph (2021).

In the subsequent AR Recon seasons of 2021 and 2022,
additional drifters have been deployed, expanding both the
density and spatial coverage of the drifter network in the
northeastern Pacific. The 2022 AR Recon deployment included
drifters in the Gulf of Alaska (Lavers et al. 2022), motivated in
part by the results of this analysis. Additional buoys providing
surface pressure observations have also been deployed off
southern Greenland under the Targeted Experiment to Rec-
oncile Increased Freshwater with Increased Convection
(Lavers et al. 2021). Our work indicates that more isolated
drifters tend to have a bigger impact on average than drifters
that are closer to other drifters, which is consistent with the need
for additional drifters over larger expanses of the ocean. This
work also indicates that it would be beneficial to have drifters
spaced such that they can capture pressure gradient patterns as-
sociated with fronts and cyclones. Future work on determining
optimal placement and spacing of the buoy network would serve
as very useful guidance for the design of future observing

FIG. 10. Standard scorecard metrics for North America and Northern Hemisphere NAVGEM forecasts as a function of forecast hour
as verified against ECMWF operational analyses for forecast start times of 0000 UTC 22 Jan 2020–0000 UTC 13 Mar 2020. Green colors
indicate improvements in the metric with the assimilation of the AR-Recon drifter surface pressure observations that are statistically significant
at the 95% level. Pink colors indicate degradations at the 95% level.
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networks, both for general NWP and specific goals such as im-
proving AR forecasts.
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